Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences - Ovidiu Calin - Bøker - Springer Nature Switzerland AG - 9783030367237 - 14. februar 2021
Ved uoverensstemmelse mellom cover og tittel gjelder tittel

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

Ovidiu Calin

Pris
CA$ 93,99

Bestillingsvarer

Forventes levert 2. - 10. jul
Legg til iMusic ønskeliste
Eller

Finnes også som:

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

 

 



760 pages, 35 Illustrations, color; 172 Illustrations, black and white; XXX, 760 p. 207 illus., 35 i

Media Bøker     Pocketbok   (Bok med mykt omslag og limt rygg)
Utgitt 14. februar 2021
ISBN13 9783030367237
Utgivere Springer Nature Switzerland AG
Antall sider 760
Mål 176 × 254 × 48 mm   ·   1,45 kg
Språk Tysk  

Vis alle

Mer med Ovidiu Calin