Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis - Tanya Mincheva - Bøker - LAP LAMBERT Academic Publishing - 9783659218828 - 18. mars 2014
Ved uoverensstemmelse mellom cover og tittel gjelder tittel

Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis

Tanya Mincheva

Pris
R$ 136,90

Bestillingsvarer

Forventes levert 5. - 13. aug
Legg til iMusic ønskeliste
Eller

Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis

The definition of arithmetic progression is viewed as a generalization of the concept of symmetry sets on the real axis. We use the positive whole numbers. Each finite arithmetic progression we call generalized symmetrical multitude We can write a sequence, the elements of which are multitudes- arithmetic progressions. For these multitudes we define KINEMATICS AND DYNAMICS That interpretation is used to prove the theorem of Goldbach In the second part we consider the Riemann hypothesis by analyzing some helix lines. In third part we have a problem by vector optimization in euclidean metric.

Media Bøker     Pocketbok   (Bok med mykt omslag og limt rygg)
Utgitt 18. mars 2014
ISBN13 9783659218828
Utgivere LAP LAMBERT Academic Publishing
Antall sider 72
Mål 150 × 4 × 225 mm   ·   125 g
Språk Tysk  

Vis alle

Mer med Tanya Mincheva