Infinite-variance Stable Errors and Robust Estimation Procedures: a Monte Carlo Study with Empirical Applications - Fatma Özgü Serttas - Bøker - LAP LAMBERT Academic Publishing - 9783846547328 - 1. desember 2011
Ved uoverensstemmelse mellom cover og tittel gjelder tittel

Infinite-variance Stable Errors and Robust Estimation Procedures: a Monte Carlo Study with Empirical Applications

Pris
¥ 8.687

Bestillingsvarer

Forventes levert 11. - 19. des
Julegaver kan byttes frem til 31. januar
Legg til iMusic ønskeliste
eller

Gaussian normal error assumption is a basic assumption for co-integration tests. Ordinary Least Squares (OLS) based regression techniques are also widely used together with the normality assumption. To consider the heavy-tailed structure observed in many economic and financial time series, new residual-based co-integration tests are developed and analyzed via Monte Carlo simulations. The new tests are based on Least Absolute Deviation (LAD) regressions, whose error structure follows the infinite-variance stable distribution. Empirical applications on Forward Rate Unbiasedness Hypothesis (FRUH) and Purchasing Power Parity (PPP) verify the need to make use of the infinite-variance stable distributions as the error distributions.

Media Bøker     Pocketbok   (Bok med mykt omslag og limt rygg)
Utgitt 1. desember 2011
ISBN13 9783846547328
Utgivere LAP LAMBERT Academic Publishing
Antall sider 152
Mål 150 × 9 × 226 mm   ·   244 g
Språk Tysk